
A-ViT: Adaptive Tokens for Efficient Vision Transformer

Hongxu Yin Arash Vahdat Jose M. Alvarez Arun Mallya Jan Kautz Pavlo Molchanov
NVIDIA

{dannyy, avahdat, josea, amallya, jkautz, pmolchanov}@nvidia.com

To
ke

n
re

m
ov

al
 &

 re
or

g.

0.0

0.0

To
ke

n
ha

lti
ng

Tr
an

sf
or

m
er

 B
lo

ck
Token Depths

Layer 1

Mean-field
aggregation

Task head

Tokens remain: 197 Tokens remain: 190

0.0

0.0

0.0

.

.

.

0.0

0.1

0.0

1.0

0.7

.

.

.

0.0

0.1

0.0

0.7

Tokens remain: 10

0.2

0.2

.
.
.

Adaptive Halting

Tr
an

sf
or

m
er

 B
lo

ck

A
da

pt
iv

e
H

al
tin

g

Tr
an

sf
or

m
er

 B
lo

ck

A
da

pt
iv

e
H

al
tin

g

Halting probability

To
ke

ni
za

tio
n

.

.

.

.

.

.

Embedding

Class token
memory

Layer 2 Layer K

ImageNet1K Examples for Adaptive Tokens

Figure 1. We introduce A-ViT, a method to enable adaptive token computation for vision transformers. We augment the vision transformer
block with adaptive halting module that computes a halting probability per token. The module reuses the parameters of existing blocks
and it borrows a single neuron from the last dense layer in each block to compute the halting probability, imposing no extra parameters or
computations. A token is discarded once reaching the halting condition. Via adaptively halting tokens, we perform dense compute only on
the active tokens deemed informative for the task. As a result, successive blocks in vision transformers gradually receive less tokens, leading
to faster inference. Learnt token halting vary across images, yet align surprisingly well with image semantics (see examples above and more
in Fig. 3). This results in immediate, out-of-the-box inference speedup on off-the-shelf computational platform.

Abstract
We introduce A-ViT, a method that adaptively adjusts

the inference cost of vision transformer (ViT) for images of
different complexity. A-ViT achieves this by automatically
reducing the number of tokens in vision transformers that
are processed in the network as inference proceeds. We refor-
mulate Adaptive Computation Time (ACT [17]) for this task,
extending halting to discard redundant spatial tokens. The
appealing architectural properties of vision transformers
enables our adaptive token reduction mechanism to speed
up inference without modifying the network architecture or
inference hardware. We demonstrate that A-ViT requires no
extra parameters or sub-network for halting, as we base the
learning of adaptive halting on the original network parame-
ters. We further introduce distributional prior regularization
that stabilizes training compared to prior ACT approaches.
On the image classification task (ImageNet1K), we show
that our proposed A-ViT yields high efficacy in filtering in-
formative spatial features and cutting down on the overall
compute. The proposed method improves the throughput of
DeiT-Tiny by 62% and DeiT-Small by 38% with only 0.3%
accuracy drop, outperforming prior art by a large margin.

Project page at https://a-vit.github.io/.

1. Introduction

Transformers have emerged as a popular class of neural
network architecture that computes network outputs using
highly expressive attention mechanisms. Originated from the
natural language processing (NLP) community, they have
been shown effective in solving a wide range of problems in
NLP, such as machine translation, representation learning,
and question answering [2, 9, 22, 35, 44]. Recently, vision
transformers have gained an increasing popularity in the vi-
sion community and they have been successfully applied to a
broad range of vision applications, such as image classifica-
tion [11, 16, 32, 43, 48, 55], object detection [3, 7, 39], image
generation [20,21], and semantic segmentation [28,52]. The
most popular paradigm remains when vision transformers
form tokens via splitting an image into a series of ordered
patches and perform inter-/intra-calculations between tokens
to solve the underlying task. Processing an image with
vision transformers remains computationally expensive, pri-
marily due to the quadratic number of interactions between
tokens [36,40,53]. Therefore, deploying vision transformers
on data processing clusters or edge devices is challenging
amid significant computational and memory resources.

The main focus of this paper is to study how to automati-

https://a-vit.github.io/

cally adjust the compute in visions transformers as a function
of the complexity of the input image. Almost all mainstream
vision transformers have a fixed cost during inference that
is independent from the input. However, the difficulty of a
prediction task varies with the complexity of the input image.
For example, classifying a car versus a human from a single
image with a homogeneous background is relatively simple;
while differentiating between different breeds of dogs on a
complex background is more challenging. Even within a
single image, the patches that contain detailed object fea-
tures are far more informative compared to those from the
background. Inspired by this, we develop a framework that
adaptively adjusts the compute used in vision transformers
based on the input.

The problem of input-dependent inference for neural net-
works has been studied in prior work. Graves [17] proposed
adaptive computation time (ACT) to represent the output
of the neural module as a mean-field model defined by a
halting distribution. Such formulation relaxes the discrete
halting problem to a continuous optimization problem that
minimizes an upper bound on the total compute. Recently,
stochastic methods were also applied to solve this problem,
leveraging geometric-modelling of exit distribution to en-
able early halting of network layers [1]. Figurnov et al. [13]
proposed a spatial extension of ACT that halts convolutional
operations along the spatial cells rather than the residual
layers. This approach does not lead to faster inference as
high-performance hardware still relies on dense computa-
tions. However, we show that the vision transformer’s uni-
form shape and tokenization enable an adaptive computation
method to yield a direct speedup on off-the-shelf hardware,
surpassing prior work in efficiency-accuracy tradeoff.

In this paper, we propose an input-dependent adaptive
inference mechanism for vision transformers. A naive ap-
proach is to follow ACT, where the computation is halted for
all tokens in a residual layer simultaneously. We observe that
this approach reduces the compute by a small margin with
an undesirable accuracy loss. To resolve this, we propose
A-ViT, a spatially adaptive inference mechanism that halts
the compute of different tokens at different depths, reserv-
ing compute for only discriminative tokens in a dynamic
manner. Unlike point-wise ACT within convolutional fea-
ture maps [13], our spatial halting is directly supported by
high-performance hardware since the halted tokens can be
efficiently removed from the underlying computation. More-
over, entire halting mechanism can be learnt using existing
parameters within the model, without introducing any extra
parameters. We also propose a novel approach to target dif-
ferent computational budgets by enforcing a distributional
prior on the halting probability. We empirically observe that
the depth of the compute is highly correlated with the object
semantics, indicating that our model can ignore less relevant
background information (see quick examples in Fig. 1 and

more examples in Fig. 3). Our proposed approach signifi-
cantly cuts down the inference cost – A-ViT improves the
throughput of DEIT-Tiny by 62% and DEIT-Small by 38%
with only 0.3% accuracy drop on ImageNet1K.

Our main contributions are as follows:
• We introduce a method for input-dependent inference

in vision transformers that allows us to halt the compu-
tation for different tokens at different depth.

• We base learning of adaptive token halting on the exis-
tent embedding dimensions in the original architecture
and do not require extra parameters or compute for
halting.

• We introduce distributional prior regularization to guide
halting towards a specific distribution and average token
depth that stabelizes ACT training.

• We analyze the depth of varying tokens across different
images and provide insights into the attention mecha-
nism of vision transformer.

• We empirically show that the proposed method im-
proves throughput by up to 62% on hardware with mi-
nor drop in accuracy.

2. Related Work
There are a number of ways to improve the efficiency of

transformers including weight sharing across transformer
blocks [26], dynamically controlling the attention span of
each token [5, 40], allowing the model to output the result
in an earlier transformer block [38, 56], and applying prun-
ing [53]. A number of methods have aimed at reducing
the computationally complexity of transformers by reducing
the quadratic interactions between tokens [6, 23, 24, 41, 47].
We focus on approaches related to adaptive inference that
depends on the input image complexity. A more detailed
analysis of the literature is present in [19].
Special architectures. One way is to change the architec-
ture of the model to support adaptive computations [4,14,15,
18, 25, 27, 30, 37, 42, 51, 54]. For example, models that repre-
sent a neural network as a fixed-point function can have the
property of adaptive computation by default. Such models
compute the difference to the internal state and, when ap-
plied over multiple iterations, converge towards the solution
(desired output). For example, neural ordinary differential
equations (ODEs) use a new architecture with repetitive com-
putation to learn the dynamics of the process [10]. Using
ODEs requires a specific solver, is often slower than fix depth
models and requires adding extra constraints on the model
design. [54] learns a set of classifiers with different resolu-
tions executed in order; computation stops when confidence
of the model is above the threshold. [27] proposed a residual
variant with shared weights and a halting mechanism.
Stochastic and reinforcement learning (RL) methods.
The depth of a residual neural network can be changed dur-
ing inference by skipping a subset of residual layers. This

is possible since residual networks have the same input and
output feature dimensions and they are known to perform
feature refinements iteratively. Individual extra models can
be learned on the top of a backbone to change the compu-
tational graph. A number of approaches [29, 34, 49, 50]
proposed to train a separate network via RL to decide when
to halt. These approaches require training of a dedicated
halting model and their training is challenging due to the
high-variance training signal in RL. Conv-AIG [45] learns
conditional gating of residual blocks via Gumbel-softmax
trick. [46] extends the idea to spatial dimension (pixel level).
Adaptive inference in vision transformers. With the in-
creased popularity, researchers have very recently explored
adaptive inference for vision transformers. DynamicViT [36]
uses extra control gates that are trained with the Gumbel-
softmax trick to halt tokens and it resembles some similar-
ities to Conv-AIG [45] and [46]. Gumbel-softmax-based
relaxation solutions might be sub-optimal due to the diffi-
culty of regularization, stochasticity of training, and early
convergence of the stochastic loss, requiring multi-stage to-
ken sparsification as a heuristic guidance. In this work, we
approach the problem from a rather different perspective,
and we study how an ACT [17]-like approach can be defined
for spatially adaptive computation in vision transformers.
We show complete viability to remove the need for the extra
halting sub-networks, and we show that our models bring
simultaneous efficiency, accuracy, and token-importance al-
location improvements, as shown later.

3. A-ViT
Consider a vision transformer network that takes an image

x P RCˆHˆW (C, H , and W represent channel, height, and
width respectively) as input to make a prediction through:

y “ C ˝ FL ˝ FL´1 ˝ ... ˝ F1 ˝ Epxq, (1)

where the encoding network Ep¨q tokenizes the image
patches from x into the positioned tokens t P RKˆE , K be-
ing the total number of tokens and E the embedding dimen-
sion of each token. Cp¨q post-processes the transformed class
token after the entire stack, while the L intermediate trans-
former blocks Fp¨q transform the input via self-attention.
Consider the transformer block at layer l that transforms all
tokens from layer l ´ 1 via:

tl1:K “ F lptl´1
1:Kq, (2)

where tl1:K denotes all the K updated token, with t01:K “

Epxq. Note that the internal computation flow of transformer
blocks Fp¨q is such that the number of tokens K can be
changed from a layer to another. This offers out-of-the-box
computational gains when tokens are dropped due to the
halting mechanism. Vision transformer [11, 43] utilizes a
consistent feature dimension E for all tokens throughout

layers. This makes it easy to learn and capture a global
halting mechanism that monitors all layers in a joint man-
ner. This also makes halting design easier for transformers
compared to CNNs that require explicit handling of vary-
ing architectural dimensions, e.g., number of channel, at
different depths.

To halt tokens adaptively, we introduce an input-
dependent halting score for each token as a halting prob-
ability hl

k for a token k at layer l:

hl
k “ Hptlkq, (3)

where Hp¨q is a halting module. Akin to ACT [17], we
enforce the halting score of each token hl

k to be in the range
0 ď hl

k ď 1, and use accumulative importance to halt tokens
as inference progresses into deeper layers. To this end, we
conduct the token stopping when the cumulative halting
score exceeds 1 ´ ϵ:

Nk “ argmin
nďL

n
ÿ

l“1

hl
k ě 1 ´ ϵ, (4)

where ϵ is a small positive constant that allows halting after
one layer. To further alleviate any dependency on dynami-
cally halted tokens between adjacent layers, we mask out a
token tk for all remaining depth l ą Nk once it is halted by
(i) zeroing out the token value, and (ii) blocking its attention
to other tokens, shielding its impact to tląNk in Eqn. 2. We
define hL

1:K “ 1 to enforce stopping at the final layer for
all tokens. Our token masking keeps the computational cost
of our training iterations similar to the original vision trans-
former’s training cost. However, at the inference time, we
simply remove the halted tokens from computation to mea-
sure the actual speedup gained by our halting mechanism.

We incorporate Hp¨q into the existing vision transformer
block by allocating a single neuron in the MLP layer to do
the task. Therefore, we do not introduce any additional learn-
able parameters or compute for halting mechanism. More
specifically, we observe that the embedding dimension E of
each token spares sufficient capacity to accommodate learn-
ing of adaptive halting, enabling halting score calculation as:

Hptlkq “ σpγ ¨ tlk,e ` βq, (5)

where tlk,e indicates the eth dimension of token tlk and
σpuq “ 1

1`exp´u is the logistic sigmoid function. Above,
β and γ are shifting and scaling parameters that adjust the
embedding before applying the non-linearity. Note that these
two scalar parameters are shared across all layers for all
tokens. Only one entry of the embedding dimension E
is used for halting score calculation. Empirically, we ob-
serve that the simple choice of e “ 0 (the first dimension)
performs well, while varying indices does not change the
original performance, as we show later. As a result our halt-
ing mechanism does not introduce additional parameters or
sub-network beyond the two scalar parameters β and γ.

Em
be

dd
in
g

di
m
en

si
on

Tr
an

sf
or

m
er

 b
lo

ck
Tr

an
sf

or
m

er
 b

lo
ck

C
la
ss

to
ke
n

Halting
probability

Connection

via

attention

Classification
head

Aggregation

Tr
an

sf
or

m
er

 b
lo

ck
Tr

an
sf

or
m

er
 b

lo
ck

Tr
an

sf
or

m
er

 b
lo

ck

Stop

Tr
an

sf
or

m
er

 b
lo

ck

Im
ag

e
to
ke
n

Legend:

Em
be

dd
in
g

di
m
en

si
on

continuecontinue

continue continue continue continue

Figure 2. An example of A-ViT: In the visualization, we omit (i) other patch tokens, (ii) the attention between the class and patch token and
(iii) residual connections for simplicity. The first element of every token is reserved for halting score calculation, adding no computation
overhead. We denote the class token with a subscript c as it has a special treatment. Each token indexed by k has a separate Nk accumulator
and stop at different depths. Unlike standard ACT, the mean-field formulation is applied only to the classification token, while other tokens
contribute to the class token via attention. This allows adaptive token calculation without the aggregation of image/patch tokens.

To track progress of halting probabilities across layers,
we calculate a remainder for each token as:

rk “ 1 ´

Nk´1
ÿ

l“1

hl
k, (6)

that subsequent forms a halting probability as:

plk “

$

’

&

’

%

0 if l ą Nk,

rk if l “ Nk,

hl
k if l ă Nk.

(7)

Given the range of h and r, halting probability per token
at each layer is always bounded 0 ď plk ď 1. The overall
ponder loss to encourage early stopping is formulated via
auxiliary variable r (reminder):

Lponder :“
1

K

K
ÿ

k“1

ρk “
1

K

K
ÿ

k“1

pNk ` rkq, (8)

where ponder loss ρk of each token is averaged. Vision
transformers use a special class token tk to produce the clas-
sification prediction, we denote it as tc for future notations.
This token similar to other input tokens is updated in all lay-
ers. We apply a mean-field formulation (halting-probability
weighted average of previous states) to form the output token
to and the associated task loss as:

Ltask “ Cptoq, where to “

L
ÿ

l“1

plct
l
c. (9)

Our vision transformer can then be trained by minimizing:

Loverall “ Ltask ` αpLponder, (10)

where αp scales the pondering loss relative to the the main
task loss. Algorithm 1 describes the overall computation
flow, and Fig. 2 depicts the associated halting mechanism
for visual explanation. At this stage, the objective function
encourages an accuracy-efficiency trade-off when pondering
different tokens at varying depths, enabling adaptive control.

One critical factor in Eqn. 10 is αp that balances halting
strength and network performance for the target applica-
tion. A larger αp value imposes a stronger penalty, and
hence learns to halt tokens earlier. Despite efficacy towards
computation reduction, prior work on adaptive computa-
tion [13, 17] have found that training can be sensitive to
the choice of αp and its value may not provide a fine-grain
control over accuracy-efficiency trade-off. We empirically
observe a similar behavior in vision transformers.

As a remedy, we introduce a distributional prior to regular-
ize hl such that tokens are expected to exit at a target depth
on average, however, we still allow per-image variations.
In this case for infinite number of input images we expect
the the depth of token to vary within the distributional prior.
Similar prior distribution has been recently shown effective
to stablize convergence during stochastic pondering [1]. To
this end, we define a halting score distribution:

H :“ r

řK
k“1 h

1
k

K
,

řK
k“1 h

2
k

K
, ...,

řK
k“1 h

L
k

K
s, (11)

that averages expected halting score for all tokens across
at each layer of network (i.e., H P RL). Using this as an
estimate of how halting likelihoods distribute across layers,
we regularize this distribution towards a pre-defined prior
using KL divergence. We form the new distributional prior
regularization term as:

Ldistr. “ KLpH || Htargetq, (12)

Algorithm 1 Adaptive tokens in vision transformer without
imposing extra parameters.
Input: tokenized input tensor input P RKˆE , K,E being
token number and embedding dimension; c is class-token
index in K; 0 ă ϵ ă 1
Output: aggregated output tensor out, ponder loss ρ

1: t = input
2: cumul “ 0 Ź Cumulative halting score
3: R “ 1 Ź Remainder value
4: out = 0 Ź Output of the network
5: ρ “ 0 Ź Token ponder loss vector
6: m “ 1 Ź Token mask m P RK

7: for l “ 1 ... L do
8: t = F lpt d mq

9: if l ă L then
10: h “ σpγ ¨ t:,0 ` βq Ź h P RK

11: else
12: h “ 1
13: end if
14: cumul `“ h
15: ρ `“ m Ź Add one per remaining token
16: for k “ 1, ...,K do
17: if cumulk ă 1 ´ ϵ then
18: Rk ´“ hk

19: else
20: ρk `“ Rk

21: end if
22: end for
23: if cumulc ă 1 ´ ϵ then
24: out `“ tc,: ˆ hc

25: else
26: out `“ tc,: ˆ Rc

27: end if
28: m Ð cumul ă 1 ´ ϵ Ź Update mask
29: end for
30: return out, ρ “

sumpρq

K

where KL refers to the Kullback-Leibler divergence, and
Htarget denotes a target halting score distribution with a guid-
ing stopping layer. We use the probability density function
of Gaussian distribution to define a bell-shaped distribution
Htarget in this paper, centered at the expected stopping depth
N target. Intuitively, this weakly encourages the expected sum
of halting score for each token to trigger exit condition at
N target. This offers enhanced control of expected remaining
compute, as we show later in experiments.

Our final loss function that trains the network parameters
for adaptive token computation is formulated as:

Loverall “ Ltask ` αdLdistr. ` αpLponder, (13)

where αd is a scalar coefficient that balances the distribution
regularization against other loss terms.

4. Experiments

We evaluate our method for the classification task on the
large-scale 1000-class ImageNet ILSVRC 2012 dataset [8]
at the 224 ˆ 224 pixel resolution. We first analyze the per-
formance of adaptive tokens, both qualitatively and quantita-
tively. Then, we show the benefits of the proposed method
over prior art, followed by a demonstration of direct through-
put improvements of vision transformers on legacy hard-
ware. Finally, we evaluate the different components of our
proposed approach to validate our design choices.
Implementation details. We base A-ViT on the data-
efficient vision transformer architecture (DeiT) [43] that in-
cludes 12 layers in total. Based on original training recipe1,
we train all models on only ImageNet1K dataset without
auxiliary images. We use the default 16 ˆ 16 patch resolu-
tion. For all experiments in this section, we use Adam for
optimization (learning rate 1.5 ¨ 10´3) with cosine learn-
ing rate decay. For regularization constants we utilize
αd “ 0.1, αp “ 5 ¨ 10´4 to scale loss terms. We use
γ “ 5, β “ ´10 for sigmoid control gates Hp¨q, shared
across all layers. We use the embedding value at index e “ 0
to represent the halting probability (Hp¨q) for tokens. Start-
ing from publicly available pretrained checkpoints, we fine-
tune DeiT-T/S variant models for 100 epochs, respectively,
to learn adaptive tokens without distillation. We denote
the associated adaptive versions as A-ViT-T/S respectively.
In what follows, we mainly use the A-ViT-T for ablations
and analysis before showing efficiency improvements for
both variants afterwards. We find that mixup is not compati-
ble with adaptive inference, and we focus on classification
without auxiliary distillation token – we remove both from
finetuning. Applying our finetuning on the full DeiT-S and
DeiT-T results in a top-1 accuracy of 78.9% and 71.3%, re-
spectively. For training runs we use 8 NVIDIA V100 GPUs
and automatic-mixed precision (AMP) [33] acceleration.

4.1. Analysis

Qualitative results. Fig. 3 visualizes the tokens’ depth that
is adaptively controlled during inference with our A-ViT-
T over the ImageNet1K validation set. Remarkably, we
observe that our adaptive token halting enables longer pro-
cessing for highly discriminative and salient regions, often
associated with the target class. Also, we observe a highly
effective halting of relatively irrelevant tokens and their asso-
ciated computations. For example, our approach on animal
classes retains the eyes, textures, and colors from the target
object and analyze them in full depth, while using fewer lay-
ers to process the background (e.g., the sky around the bird,
and ocean around sea animals). Note that even background
tokens marked as not important still actively participate in

1Based on official repository at https : / / github . com /
facebookresearch/DeiT.

https://github.com/facebookresearch/DeiT
https://github.com/facebookresearch/DeiT

Figure 3. Original image (left) and the dynamic token depth (right) of A-ViT-T on the ImageNet-1K validation set. Distribution of token
computation highly aligns with visual features. Tokens associated with informative regions are adaptively processed deeper, robust to
repeating objects with complex backgrounds. Best viewed in color.

classification during initial layers. In addition, we also ob-
serve the inspiring fact that adaptive tokens can easily (i)
keep track of repeating target objects, as shown in the first
image of the last row in Fig. 3, and (ii) even shield irrelevant
objects completely (see second image of last row).
Token depth distribution. Given a complete distinct to-
ken distribution per image, we next analyze the dataset-
level token importance distributions for additional insights.
Fig. 4 (a) depicts the average depth of the learnt tokens over
the validation set. It demonstrates a 2D Gaussian-like distri-
bution that is centered at the image center. This is consistent
with the fact that most ImageNet samples are centered, in-
tuitively aligning with the image distribution. As a result,
more compute is allocated on-the-fly to center areas, and
computational cost on the sides is reduced.
Halting score distribution. To further evaluate the halting
behavior across transformer layers, we plot the average layer-
wise halting score distribution over 12 layers. Fig. 4 (b)

1 2 3 4 5 6 7 8 9 10 11 12
Layer Index (Input -> Output)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Ha
lti

ng
 S

co
re

(a) (b)
Figure 4. (a) Average depth of tokens per image patch position
for A-ViT-T on ImageNet-1K validation set. (b) Halting score
distribution across the transformer blocks. Each point associated
with one randomly sampled image, denoting average token score at
that layer.

shows box plots of halting scores averaged over all tokens per
layer per image. The analysis is performed on 5K randomly
sampled validation images. As expected, the halting score
gradually increases at initial stages, peaks and then decreases

Hard samples. Easy samples.
Figure 5. Visual comparison of hard and easy samples from the
ImageNet-1K validation set determined by average token depth.
Note that all images above be correctly classified – only differ-
ence is that hard samples require more depths for tokens to process
their semantic information. Tokens in the left images exit approxi-
mately 5 layers later compared to the right images.

for deeper layers.
Sharp-halting baseline. To further compare with static
models of the same depth for performance gauging, we also
train a DeiT-T with 8 layers as a sharp-halting baseline. We
observe that our A-ViT-T outperforms this new baseline by
`1.4% top-1 accuracy at a similar throughput. Although
our adaptive regime is on average similarly shallow, it still
inherits the expressivity of the original deeper network, as
we observe that informative tokens are processed by deeper
layers (e.g., until 12th layer as in Fig. 3).
Easy and hard samples. We can analyse the difficulty of an
image for the network by looking at the averaged depth of the
adaptive tokens per image. Therefore, in Fig. 5, we depict
hard and easy samples in terms of the required computation.
Note, all samples in the figure are correctly classified, and
only differ by the averaged token depth. We can observe that
images with homogeneous background are relatively easy
for classification, and A-ViT processes them much faster
than hard samples. Hard samples represent images with
informative visual features distributed over the entire image,
and hence incur more computation.
Class-wise sensitivity. Given an adaptive inference
paradigm, we analyze the change in classification accuracy
for various classes with respect to the full model. In par-
ticular, we compute class-wise validation accuracy changes
before and after applying adaptive inference. We summa-
rize both qualitative and quantitative results in Table 1. We
observe that originally very confident or uncertain samples
are not affected by adaptive inference. Adaptive inference
improves accuracy of the visually dominant classes such as
individual furniture and animals.

4.2. Comparison to Prior Art

Next, we compare our method with previous work that
study adaptive computation. For comprehensiveness, we sys-

Rank Class-wise Sensitivity to Adaptive Inference static acc.Ñadaptive acc.

Favoring (acc. incr.) Sensitive (acc. drop) Stable

1 throne 56Ñ74% muzzle 58Ñ38% yellow lady-slipper 100Ñ100%

2 lakeland terrier 64Ñ78% sewing machine 80Ñ62% leonberg 100Ñ100%

3 cogi 60Ñ74% vaccume 37Ñ28% proboscis monkey 100Ñ100%

4 african elephant 54Ñ68% flute 38Ñ20% velvet 10Ñ10%

5 soft-coated wheaten terrier 68Ñ82% shovel 64Ñ46% laptop 14Ñ14%

muzzle sewing machine vacuum throne terrier cogi
fixed ✓ adaptive ✗ fixed ✗ adaptive ✓

Table 1. Ranking of stable and sensitive classes to adaptive compu-
tation in A-ViT compared to fixed computation graph that executes
the full model for inference. Sample images included for top three
classes that favor or remain sensitive to adaptive computation.

tematically compare with five state-of-the-art halting mecha-
nisms, covering both vision and NLP methods that tackle the
dynamic inference problem from different perspectives: (i)
adaptive computation time [17] as ACT reference applied on
halting entire layers, (ii) confidence-based halting [31] that
gauges on logits, (iii) similarity-based halting [12] that over-
sees layer-wise similarity, (iv) pondering-based halting [1]
that exits based on stochastic halting-probabilities, and (v)
the very recent DynamicViT [36] that learns halting deci-
sions via Gumble-softmax relaxation. Details in appendix.
Performance comparison. We compare our results in Ta-
ble 2 and demonstrate simultaneous performance improve-
ments over prior art in having smaller averaged depth,
smaller number of FLOPs and better classification accuracy.
Notably our method involves no extra parameters, while cut-
ting down FLOPs by 39% with only a minor loss of accuracy.
To further visualize improvements over the state-of-the-art
DynamicViT [36], we include Fig. 6 as a qualitative com-
parison of token depth for an official sample presented in
the work. As noticed, A-ViT more effectively captures the
important regions associated with the target objects, ignores
the background tokens, and improves efficiency.

Note that both DynamicViT and A-ViT investigate adap-
tive tokens but from two different angles. DynamicViT
utilizes Gumbel-Softmax to learn halting and incorporates a
control for computation via a multi-stage token keeping ra-
tio; it provides stronger guarantees on the latency by simply
setting the ratio. A-ViT on the other hand takes a complete
probabilistic approach to learn halting via ACT. This enables
it to freely adjust computation, and hence capture enhanced
semantic and improve accuracy, however requires a distribu-
tional prior and has a less intuitive hyper-parameter.
Hardware speedup. In Table 3, we compare speedup on off-
the-shelf GPUs. See appendix for measurement details. In
contrast to spatial ACT in CNNs that require extra computa-
tion flow and kernel re-writing [13], A-ViT enables speedups
out of the box in vision transformers. With only 0.3% in
accuracy drop, our method directly improves the throughputs
of DeiT small and tiny variants by 38% and 62% without
requiring hardware/library modification.

Method Efficiency Top-1 Acc. Ò

Params. free Avg. depth Ó FLOPs Ó

Baseline [43] - 12.00 1.3G 71.3

ACT [17] ✗ 10.01 1.0G 71.0
Confidence threshold [31] ✓ 10.63 1.1G 65.8
Similarity gauging [12] ✓ 10.68 1.1G 69.4
PonderNet [1] ✓ 9.74 1.0G 66.2
DynamicViT [36] ✗ 7.62 0.9G 70.9
Ours ✓ 7.23 0.8G 71.0

Table 2. Comparison with prior art that studies dynamic inference
halting mechanisms for transformers. Avg. depth specifies the
mean depths of the tokens over the entire validation set.

Original DynamicViT (Rao et al. [36]) Ours
Figure 6. Visual comparison compared to prior art on token distribu-
tion for a sample taken from the public repository of DynamicViT
by Rao et al. [36]. Only shaded (non-white) tokens are processed
by all 12 layers. Our method better captures the semantics of the
target class, drops more tokens, and saves more computation.

4.3. Ablations

Here, we perform ablations studies to evaluate each com-
ponent in our method and validate their contributions.
Token-level ACT via Lponder. One noticeable distinction of
this work from conventional ACT [17] is a full exploration of
spatial redundancy in image patches, and hence their tokens.
Comparing the first and last row in Table 2, we observe that
our fine-grained pondering reduces token depths by roughly
3 layers, and results in 25% more FLOP reductions compared
to the conventional ACT.
Distributional prior via Ldistr.. Incorporating the distribu-
tional prior allows us to better guide the expected token
depth towards a target average depth, as seen in Fig. 7. As
opposed to αp that indirectly gauges on the remaining ef-
ficiency and usually suffers from over-/under-penalization,
our distributional prior guides a quick convergence to a target
depth level, and hence improves final accuracy. Note that a
distributional prior complements the ponder loss in guiding
overall halting towards a target depth, but it cannot capture
remainder information – using ACT-agnostic distributional
prior alone results in an accuracy drop of more than 2%.
“Free” embedding to learn halting. Next we justify the
usage of a single value in the embedding vector for halt-
ing score computation and representation. In the embed-
ding vectors, we set one entry at a random index to zero
and analyze the associated accuracy drop without any fine-
tuning of the model. Repeating 10 times for DeiT-T/S
variants, the ImageNet1K top-1 accuracy only drops by
0.08% ˘ 0.04%/0.04% ˘ 0.03%, respectively. This exper-
iment demonstrates that one element in the vector can be
used for another task with minimal impact on the original

Method Efficiency Top-1 Acc.Ò Throughput
Params. Ó FLOPs Ó

ViT-B [11] 86M 17.6G 77.9 0.3K imgs/s
DeiT-S [43] 22M 4.6G 78.9 0.8K imgs/s
DynamicViT [36] 23M 3.4G 78.3 1.0K imgs/s
A-ViT-S 22M 3.6G 78.6 1.1K imgs/s
A-ViT-S + distl. 22M 3.6G 80.7 1.1K imgs/s

DeiT-T [43] 5M 1.2G 71.3 2.1K imgs/s
DynamicViT [36] 5.9M 0.9G 70.9 2.9K imgs/s
A-ViT-T 5M 0.8G 71.0 3.4K imgs/s
A-ViT-S + distl. 5M 0.8G 72.4 1.1K imgs/s

Table 3. Throughput improvement enabled via adaptive tokens.
Models with + distil. is augmented with distillation token.

Figure 7. Training curves with (blue) and without (yellow) distribu-
tional priors towards a target depth of 9 layers. Both lines share the
exact same training hyper-parameter set with the only difference in
including the distributional prior guidance. As opposed to αp that
over-penalizes the networks, Ldistr. guides a very fast convergence
towards the target depth and yields a 6.4% accuracy gain.

performance. In our experiments, we pick the first element
in the vector and use it for the halting score computation.
Layer-wise networks to learn halting. We continue to ex-
amine viability to leverage extra networks for halting learn-
ing. To this end we add an extra two-layer learnable network
(with input/hidden dimensions of 192{96, internal/output
gates as GeLU/Sigmoid) on top of embeddings of each
layer in A-ViT-T. We observed a very slight increase in
accuracy of `0.06% with `0.2M parameter and ´12.6%
inference throughput overhead, as auxiliary nets have to be
executed sequentially with ViT layers. Given this tradeoff,
we base learning of halting on existing ViT parameters.

5. Limitations & Future Directions
In this work we primarily focused on the classification

task. However, extension to other tasks such as video pro-
cessing can be of great interest, given not only spatial but
also temporal redundancy within input tokens.

6. Conclusions
We have introduced A-ViT to adaptively adjust the

amount of token computation based on input complexity. We
demonstrated that the method improves vision transformer
throughput on hardware without imposing extra parame-
ters or modifications of transformer blocks, outperforming
prior dynamic approaches. Captured token importance dis-
tribution adaptively varies by input images, yet coincides
surprisingly well with human perception, offering insights
for future work to improve vision transformer efficiency.

References
[1] Andrea Banino, Jan Balaguer, and Charles Blundell. Ponder-

net: Learning to ponder. In ICML Workshop, 2021.
[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020.

[4] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David Duvenaud. Neural ordinary differential equations. In
NeurIPS, 2018.

[5] Ting Chen, Ji Lin, Tian Lin, Song Han, Chong Wang, and
Denny Zhou. Adaptive mixture of low-rank factorizations for
compact neural modeling, 2019.

[6] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter
Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz
Kaiser, David Benjamin Belanger, Lucy J Colwell, and Adrian
Weller. Rethinking attention with performers. In ICLR, 2021.

[7] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. Up-
DETR: Unsupervised pre-training for object detection with
transformers. In CVPR, 2021.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. ImageNet: A large-scale hierarchical image database.
In CVPR, 2009.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT, 2019.

[10] Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo Shang.
Towards adaptive residual network training: A neural-ode
perspective. In ICML, 2020.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Transform-
ers for image recognition at scale. In ICLR, 2021.

[12] Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli.
Depth-adaptive transformer. In ICLR, 2020.

[13] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang,
Jonathan Huang, Dmitry Vetrov, and Ruslan Salakhutdinov.
Spatially adaptive computation time for residual networks. In
CVPR, 2017.

[14] Nicholas Frosst and Geoffrey Hinton. Distilling a neu-
ral network into a soft decision tree. arXiv preprint
arXiv:1711.09784, 2017.

[15] Samy Wu Fung, Howard Heaton, Qiuwei Li, Daniel
McKenzie, Stanley Osher, and Wotao Yin. JFB:
Jacobian-free backpropagation for implicit networks.
https://arxiv.org/abs/2103.12803, 2021.

[16] Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre
Stock, Armand Joulin, Hervé Jégou, and Matthijs Douze.
LeVit: A vision transformer in convnet’s clothing for faster
inference. In ICCV, 2021.

[17] Alex Graves. Adaptive computation time for recurrent neural
networks. arXiv preprint arXiv:1603.08983, 2016.

[18] Qiushan Guo, Zhipeng Yu, Yichao Wu, Ding Liang, Haoyu
Qin, and Junjie Yan. Dynamic recursive neural network. In
CVPR, 2019.

[19] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A survey.
TPAMI, 2021.

[20] Drew A Hudson and C Lawrence Zitnick. Generative adver-
sarial transformers. arXiv preprint arXiv:2103.01209, 2021.

[21] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. TransGAN:
Two transformers can make one strong GAN. In NeurIPS,
2021.

[22] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen,
Linlin Li, Fang Wang, and Qun Liu. TinyBERT: Distilling
bert for natural language understanding. In EMNLP, 2020.

[23] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and
François Fleuret. Transformers are RNNs: Fast autoregressive
transformers with linear attention. In ICML, 2020.

[24] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In ICLR, 2020.

[25] Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and
Samuel Rota Bulo. Deep neural decision forests. In CVPR,
2015.

[26] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut. ALBERT: A lite
BERT for self-supervised learning of language representa-
tions. In ICLR, 2020.

[27] Sam Leroux, Pieter Simoens, Bart Dhoedt, P Molchanov, T
Breuel, and J Kautz. IamNN: Iterative and adaptive mobile
neural network for efficient image classification. In ICLR
Workshop, 2018.

[28] Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima Anand-
kumar, Jose M Alvarez, Tong Lu, and Ping Luo. Panoptic
segformer. arXiv preprint arXiv:2109.03814, 2021.

[29] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime
neural pruning. In NeurIPS, 2017.

[30] Lanlan Liu and Jia Deng. Dynamic deep neural networks: Op-
timizing accuracy-efficiency trade-offs by selective execution.
In AAAI, 2018.

[31] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang
Deng, and Qi Ju. FastBERT: A self-distilling bert with adap-
tive inference time. In ACL, 2020.

[32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021.

[33] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory
Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael
Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu.
Mixed precision training. In ICLR, 2018.

[34] Augustus Odena, Dieterich Lawson, and Christopher Olah.
Changing model behavior at test-time using reinforcement
learning. arXiv preprint arXiv:1702.07780, 2017.

[35] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training, 2018.

[36] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. DynamicViT: Efficient vision
transformers with dynamic token sparsification. In NeurIPS,
2021.

[37] Samuel Rota Bulo and Peter Kontschieder. Neural decision
forests for semantic image labelling. In CVPR, 2014.

[38] Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta,
Jesse Dodge, and Noah A Smith. The right tool for the job:
Matching model and instance complexities. In ACL, 2020.

[39] Zhiqing Sun, Shengcao Cao, Yiming Yang, and Kris M Ki-
tani. Rethinking transformer-based set prediction for object
detection. In ICCV, 2021.

[40] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu
Jia, En-Yu Yang, Marco Donato, Victor Sanh, Paul What-
mough, Alexander M Rush, David Brooks, et al. EdgeBERT:
Sentence-level energy optimizations for latency-aware multi-
task nlp inference. In MICRO, 2020.

[41] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng
Juan. Sparse sinkhorn attention. In ICML, 2020.

[42] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung
Kung. BranchyNet: Fast inference via early exiting from
deep neural networks. In ICPR, 2016.

[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In ICML, 2021.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017.

[45] Andreas Veit and Serge Belongie. Convolutional networks
with adaptive inference graphs. In ECCV, 2018.

[46] Thomas Verelst and Tinne Tuytelaars. Dynamic convolutions:
Exploiting spatial sparsity for faster inference. In CVPR,
2020.

[47] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020.

[48] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In ICCV, 2021.

[49] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E
Gonzalez. SkipNet: Learning dynamic routing in convolu-
tional networks. In ECCV, 2018.

[50] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven
Rennie, Larry S Davis, Kristen Grauman, and Rogerio Feris.
Blockdrop: Dynamic inference paths in residual networks. In
CVPR, 2018.

[51] Wenhan Xia, Hongxu Yin, Xiaoliang Dai, and Niraj K Jha.
Fully dynamic inference with deep neural networks. TETC,
2021.

[52] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. SegFormer: Simple and
efficient design for semantic segmentation with transformers.
In NeurIPS, 2021.

[53] Huanrui Yang, Hongxu Yin, Pavlo Molchanov, Hai Li, and
Jan Kautz. NViT: Vision transformer compression and param-
eter redistribution. arXiv preprint arXiv:2110.04869, 2021.

[54] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and
Gao Huang. Resolution adaptive networks for efficient infer-
ence. In CVPR, 2020.

[55] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Zihang Jiang, Francis EH Tay, Jiashi Feng, and Shuicheng
Yan. Tokens-to-token ViT: Training vision transformers from
scratch on imagenet. In ICCV, 2021.

[56] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley,
Ke Xu, and Furu Wei. BERT loses patience: Fast and robust
inference with early exit. In NeurIPS, 2020.

Appendix A - More Examples

fur coat kimono drilling platform

schooner bell gong

airliner pitcher attack aircraft carrier

dogsled missile baseball

admiral butterfly starfish screen

Arabian camel wood rabbit obelisk

guillotine platyhelminth digital watch

barracouta leopard mushroom

golf-cart radio telescope upright piano
Figure 8. Additional examples across a more diverse set of image categories – original image (left) and the dynamic token depth (right) of
A-ViT-T on the ImageNet-1K validation set. Again adaptive tokens can quickly cater to informative regions while filtering out complex
backgrounds, e.g., completely ignoring human faces and focusing on the coats, see the first two image on the first row. Even for a very small
informative region of the target object, the computation can still be effectively allocated towards it, see the first golf-cart class sample of the
last row as an example.

Appendix B - Additional Details

Training. For training setup other than the scaling con-
stants, lr specified in the main manuscript, we follow orig-
inal repository for all other hyper-parameters at https:
//github.com/facebookresearch/DeiT such as
drop out rate, momentum, preprocessing, etc, imposing min-
imum training recipe changes when adapting a static model
to its adaptive counterpart.

Latency. We measure the latency on an NVIDIA TITAN
RTX 2080 GPU with PyTorch for batch size of 64 images,
CUDA 10.2. For GPU warming up, 100 forward passes are
conducted, and then the median speed of the 1K measure-
ments of the full model latency are reported. The exact same
setup is shared across all baseline and proposed methods for
a fair comparison.

SOTA baselines.. We followed DeiT’s [43] repository2 for
recipes and checkpoints as a common starting point for all
experiments. For DynamicViT [36], we used the public
repository and script from the authors. For other dynamic ap-
proaches from CNN/NLP literature, we re-implemented the
methods on DeiT to examine ACT [17] for layer-wise halt-
ing, confidence threshold [31] on post-softmax logits, two
variants of similarity gauging [12] on delta-logits based on
(i) LPIPS and (ii) MSE similarity scores, and PonderNet [1]
with geometric-distribution sampling towards token halting.
For all methods, a detailed grid search was conducted to
ensure optimal hyper-parameters.

2https://github.com/facebookresearch/DeiT

https://github.com/facebookresearch/DeiT
https://github.com/facebookresearch/DeiT

